Translate

http://cohtran.branded.me/

http://cohtran.branded.me/
http://cohtran.branded.me/

*********************************




Vẽ đồ thị trong Oxyz plot3D(f(x,y),x=..,y=..)
Vẽ đồ thị trong Oxy plot(f(x),x=..,y=..)
Đạo hàm derivative(f(x))
Tích phân Integrate(f(x))


Giải toán trực tuyến WA

nguồn : Math Problem Solver

3DFunctionsPlotter

Thứ Sáu, 11 tháng 10, 2013

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN . Chương 5 - PHẦN 5 .



   

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN .









Chương 5 -


PHẦN 5 . 



Các phương pháp giải hệ thống phương trình vi phân tuyến tính .


-Ứng dụng của hệ thống phương trình vi phân tuyến tính . 
-Phương pháp ma trận .
-Phương pháp toán tử .
-Phương pháp biến đổi Laplace  .


 

Loạt bài sau đây giới thiệu về phương trình vi phân một cách tổng quan , các khái niệm cơ bản và phương pháp giải được trình bày tinh giản dễ hiểu . Bạn đọc có thể sử dụng các phần mềm hoặc công cụ online trích dẫn chi tiết trong bài viết này để hỗ trợ cho việc học tập và nghiên cứu . Ngoài ra tác giả cũng sẽ đề cập đến những ví dụ minh họa cụ thể , các mô hình thực tế có ứng dụng trong lĩnh vực phương trình vi phân .  



Trần hồng Cơ .

01/10/2013 .



****************************************************************************Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.



1. Ứng dụng của hệ thống phương trình vi phân tuyến tính .
1.1 Bài toán dao động trượt ngang .
+Xét bài toán dao động trượt ngang không cản của nhà 2 tấm phẳng dưới tác động của hệ lực F1(t) và F2(t) với mô hình như sau 


Về mặt tổng quát , tầng thứ j ( j = 1,...,n ) được xem như một tấm phẳng cứng có khối lượng mj , chịu tải ngoài là Fj(t) , độ cứng và hệ số cản kết hợp giữa tầng j và tầng ( j -1 ) được cho bởi kj và cj . Chuyển vị của tầng j ký hiệu là xj(t) .
Phương trình chuyển động của hệ có dạng 
Xét trường hợp đặc biệt với n = 2 , m1 = m2 = m , k1 = k2  k , F1(t) = F2(t) = macosWt  . Ta thu được 

1.2 Bài toán dao động dọc .
+Xét bài toán dao động dọc của ghế trong xe hơi có mô hình như sau 

Gọi chuyển vị , khối lượng xe và ghế lần lượt là x1(t) , x2(t) , m1 và m2 , độ cứng lò xo và cản nhớt tương ứng là k1 , k2 và c1 c2 Phân tích lực cho hệ thống , theo định luật Newton 2 .


1.2 Bài toán mạch điện .
+Xét bài toán mạch điện có mô hình như sau 


Tại nút A , cường độ dòng điện trong mạch thỏa mãn  iC  =  iL  +  iR  , xét mạch điện bên trái nút A  ta có  V1(t)  = vR  + vC 
vR  =  R.iR  và  
$v_{C}=\frac{1}{C}\int_{-\infty }^{t}iCdt$
nên $V_{1}(t)=R.iR+\frac{1}{C}\int_{-\infty }^{t}iCdt$
Đạo hàm 2 vế , thu được 
$iC.\frac{1}{C}+R.\frac{\mathrm{d}(iC-iL) }{\mathrm{d} t}=\frac{\mathrm{d}V_{1}(t)}{\mathrm{d}t}$ 
Xét mạch điện bên phải nút A ta có  vR  = vL V2(t)  <=>  R.iR  = L.iL'(t) + V2(t)   hay  
$R.(iC-iL)-L.\frac{\mathrm{d} iL(t)}{\mathrm{d} t}=V_{2}(t)$,

Vậy hệ phương trình vi phân xác định iC và iL được viết 
$\left\{\begin{matrix}
R.\frac{\mathrm{d}iC(t) }{\mathrm{d} t}+\frac{1}{C}.iC(t)-R.\frac{\mathrm{d}iL(t) }{\mathrm{d} t}=\frac{\mathrm{d}V_{1}(t) }{\mathrm{d} t}\\R.iC(t)-L.\frac{\mathrm{d}iL(t) }{\mathrm{d} t}-R.iL(t)=V_{2}(t)\end{matrix}\right.$


2. Bài tập áp dụng .
2.1 Phương pháp ma trận .
+Giải các hệ phương trình vi phân sau bằng phương pháp ma trận .
2.2  Phương pháp toán tử .
+Giải các hệ phương trình vi phân sau bằng phương pháp toán tử .
2.3  Phương pháp Laplace .
+Giải các hệ phương trình vi phân sau bằng phương pháp Laplace .







Trần hồng Cơ .
14/10/2013 .

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.
 -------------------------------------------------------------------------------------------

 Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic.
 Pure mathematics is, in its way, the poetry of logical ideas.
 Albert Einstein .

Không có nhận xét nào:

Đăng nhận xét

Cám ơn lời bình luận của các bạn .
Tôi sẽ xem và trả lời ngay khi có thể .

Thank you for your comments.
I will review and respond to these issues as soon as possible.

Trần hồng Cơ .
Co.H.Tran
MMPC-VN
cohtran@mail.com

*******

Blog Toán đơn giản đăng tải các thông tin chuyên ngành của tác giả và nhiều nguồn tham khảo trên Internet .

Lưu ý :
Blog không tiếp người tàu -
chinese are not welcome here .

Bài viết được xem nhiều trong tuần

Danh sách Blog

Liên hệ

Flash-based rich text editor